When.com Web Search

  1. Ad

    related to: what is a dual polyhedron system quizlet answers free sample exam

Search results

  1. Results From The WOW.Com Content Network
  2. Dual polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_polyhedron

    The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]

  3. Dual uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_uniform_polyhedron

    The illustration here shows the vertex figure (red) of the cuboctahedron being used to derive the corresponding face (blue) of the rhombic dodecahedron.. For a uniform polyhedron, each face of the dual polyhedron may be derived from the original polyhedron's corresponding vertex figure by using the Dorman Luke construction. [2]

  4. Triangular bipyramid - Wikipedia

    en.wikipedia.org/wiki/Triangular_bipyramid

    A polyhedron with only equilateral triangles as faces is called a deltahedron. There are eight convex deltahedra, one of which is a triangular bipyramid with regular polygonal faces. [ 1 ] A convex polyhedron in which all of its faces are regular polygons is the Johnson solid , and every convex deltahedron is a Johnson solid.

  5. Pentagonal bipyramid - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_bipyramid

    The other three polyhedra with this property are the regular octahedron, the snub disphenoid, and an irregular polyhedron with 12 vertices and 20 triangular faces. [6] The dual polyhedron of a pentagonal bipyramid is the pentagonal prism. More generally, the dual polyhedron of every bipyramid is the prism, and the vice versa is true. [7]

  6. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    Simple examples of Goldberg polyhedra include the dodecahedron and truncated icosahedron. Other forms can be described by taking a chess knight move from one pentagon to the next: first take m steps in one direction, then turn 60° to the left and take n steps. Such a polyhedron is denoted GP(m,n).

  7. Dyakis dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dyakis_dodecahedron

    Since the quadrilaterals are chiral and non-regular, the dyakis dodecahedron is a non-uniform polyhedron, a type of polyhedron that is not vertex-transitive and does not have regular polygon faces. It is an isohedron, [4] meaning that it is face transitive. The dual polyhedron of a dyakis dodecahedron is the cantic snub octahedron.

  8. Trapezohedron - Wikipedia

    en.wikipedia.org/wiki/Trapezohedron

    Its dual is an unequal n-antiprism, with the top and bottom n-gons of different radii. If the kites are twisted and are of two different shapes, the n -trapezohedron can only have C n (cyclic) symmetry, order n , and is called an unequal twisted trapezohedron .

  9. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Being the dual of an Archimedean solid, the rhombic triacontahedron is face-transitive, meaning the symmetry group of the solid acts transitively on the set of faces. This means that for any two faces, A and B , there is a rotation or reflection of the solid that leaves it occupying the same region of space while moving face A to face B .