When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during

  5. Mass ratio - Wikipedia

    en.wikipedia.org/wiki/Mass_ratio

    In aerospace engineering, mass ratio is a measure of the efficiency of a rocket.It describes how much more massive the vehicle is with propellant than without; that is, the ratio of the rocket's wet mass (vehicle plus contents plus propellant) to its dry mass (vehicle plus contents).

  6. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    This is a significant reason for most rocket designs having multiple stages. The first stage can optimised for high thrust to effectively fight gravity drag and air drag, while the later stages operating strictly in orbit and in vacuum can be much easier optimised for higher specific impulse, especially for high delta-v orbits.

  7. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  8. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    These maneuvers require changes in the craft's velocity, and the classical rocket equation is used to calculate the propellant requirements for a given delta-v. A delta- v budget will add up all the propellant requirements, or determine the total delta-v available from a given amount of propellant, for the mission.

  9. Orbital inclination change - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination_change

    For more complicated maneuvers which may involve a combination of change in inclination and orbital radius, the delta-v is the vector difference between the velocity vectors of the initial orbit and the desired orbit at the transfer point. These types of combined maneuvers are commonplace, as it is more efficient to perform multiple orbital ...