Search results
Results From The WOW.Com Content Network
The concentration of pure osmium tetroxide (molar mass = 254.23 g/mol) is c(OsO 4) = 5.1 kg/L / 254.23 g/mol = 20.1 mol/L. A typical protein in bacteria, such as E. coli, may have about 60 copies, and the volume of a bacterium is about 10 −15 L. Thus, the number concentration C is C = 60 / (10 −15 L) = 6 × 10 16 L −1. The molar ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
The standard SI unit of this quantity is mol/m 3, although more practical units are commonly used, such as mole per liter (mol/L, equivalent to mol/dm 3). For example, the amount concentration of sodium chloride in ocean water is typically about 0.599 mol/L. The denominator is the volume of the solution, not of the solvent.
The experimental value adopted by CODATA in 2010 is N A = 6.022 141 29 (27) × 10 23 mol −1. [16] In 2011 the measurement was refined to 6.022 140 78 (18) × 10 23 mol −1. [17] The mole was made the seventh SI base unit in 1971 by the 14th CGPM. [18]
1 dm 3 /mol = 1 L/mol = 1 m 3 /kmol = 0.001 m 3 /mol (where kmol is kilomoles = 1000 moles) References This page was last ...
This page lists examples of the orders of magnitude of molar concentration. Source values are parenthesized where unit conversions were performed. M denotes the non-SI unit molar: 1 M = 1 mol/L = 10 −3 mol/m 3.
The solution has 1 mole or 1 equiv Na +, 1 mole or 2 equiv Ca 2+, and 3 mole or 3 equiv Cl −. An earlier definition, used especially for chemical elements, holds that an equivalent is the amount of a substance that will react with 1 g (0.035 oz) of hydrogen, 8 g (0.28 oz) of oxygen, or 35.5 g (1.25 oz) of chlorine—or that will displace any ...