Ad
related to: reflection calculator wolfram alpha
Search results
Results From The WOW.Com Content Network
Fresnel Equations – Wolfram. Fresnel equations calculator; FreeSnell – Free software computes the optical properties of multilayer materials. Thinfilm – Web interface for calculating optical properties of thin films and multilayer materials (reflection & transmission coefficients, ellipsometric parameters Psi & Delta).
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
WolframAlpha (/ ˈ w ʊ l f. r əm-/ WUULf-rəm-) is an answer engine developed by Wolfram Research. [3] It is offered as an online service that answers factual queries by computing answers from externally sourced data.
The reflection angle is equal to the incidence angle, and the amount of light that is reflected is determined by the reflectivity of the surface. The reflectivity can be calculated from the refractive index and the incidence angle with the Fresnel equations , which for normal incidence reduces to [ 42 ] : 44
Transformation of coordinates (a,b) when shifting the reflection angle in increments of When the direction of a Euclidean vector is represented by an angle θ , {\displaystyle \theta ,} this is the angle determined by the free vector (starting at the origin) and the positive x {\displaystyle x} -unit vector.
The gamma function obeys the equation (+) = ().Taking the logarithm on both sides and using the functional equation property of the log-gamma function gives:
Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1.Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.
The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...
Ad
related to: reflection calculator wolfram alpha