When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    For the function that maps a Person to their Favorite Food, the image of Gabriela is Apple. The preimage of Apple is the set {Gabriela, Maryam}. The preimage of Fish is the empty set. The image of the subset {Richard, Maryam} is {Rice, Apple}. The preimage of {Rice, Apple} is {Gabriela, Richard, Maryam}.

  3. Preimage theorem - Wikipedia

    en.wikipedia.org/wiki/Preimage_theorem

    In mathematics, particularly in the field of differential topology, the preimage theorem is a variation of the implicit function theorem concerning the preimage of particular points in a manifold under the action of a smooth map.

  4. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    A function : is monotone in this topological sense if and only if it is non-increasing or non-decreasing, which is the usual meaning of "monotone function" in real analysis. A function between topological spaces is (sometimes) called a proper map if every fiber is a compact subspace of its domain. However, many authors use other non-equivalent ...

  5. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    As another example, any non-constant function : is non-measurable with respect to the trivial -algebra = {,}, since the preimage of any point in the range is some proper, nonempty subset of , which is not an element of the trivial .

  6. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    However, this function is not injective (and hence not bijective), since, for example, the pre-image of y = 2 is {x = −1, x = 2}. (In fact, the pre-image of this function for every y, −2 ≤ y ≤ 2 has more than one element.) The function g : R → R defined by g(x) = x 2 is not surjective, since there is no real number x such that x 2 = −1.

  7. Image (category theory) - Wikipedia

    en.wikipedia.org/wiki/Image_(category_theory)

    In a category with all finite limits and colimits, the image is defined as the equalizer (,) of the so-called cokernel pair (,,), which is the cocartesian of a morphism with itself over its domain, which will result in a pair of morphisms ,:, on which the equalizer is taken, i.e. the first of the following diagrams is cocartesian, and the second equalizing.

  8. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    This function maps each image to its unique preimage. The composition of two bijections is again a bijection, but if g ∘ f {\displaystyle g\circ f} is a bijection, then it can only be concluded that f {\displaystyle f} is injective and g {\displaystyle g} is surjective (see the figure at right and the remarks above regarding injections and ...

  9. Geometric function theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_function_theory

    Analytic continuation of natural logarithm (imaginary part) Analytic continuation is a technique to extend the domain of a given analytic function.Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent.