Search results
Results From The WOW.Com Content Network
Fainter planetary rings can form as a result of meteoroid impacts with moons orbiting around the planet or, in the case of Saturn's E-ring, the ejecta of cryovolcanic material. [6] [7] Ring systems may form around centaurs when they are tidally disrupted in a close encounter (within 0.4 to 0.8 times the Roche limit) with a giant
J1407b is a substellar object, either a free-floating planet or brown dwarf, with a massive circumplanetary disk or ring system. It was first detected by automated telescopes in 2007 when its disk eclipsed the star V1400 Centauri, causing a series of dimming events for 56 days. The eclipse by J1407b was not discovered until 2010, by Mark Pecaut ...
The main rings are, working outward from the planet, C, B and A, with the Cassini Division, the largest gap, separating Rings B and A. Several fainter rings were discovered more recently. The D Ring is exceedingly faint and closest to the planet. The narrow F Ring is just outside the A Ring. Beyond that are two far fainter rings named G and E.
Solar System objects more massive than 10 21 kilograms are known or expected to be approximately spherical. ... gas giant planet; has rings: prehistoric: Saturn:
The existence of a ring system around a minor planet was unexpected because it had been thought that rings could only be stable around much more massive bodies. Ring systems around minor bodies had not previously been discovered despite the search for them through direct imaging and stellar occultation techniques. [7]
The planet's 164-year orbit takes it through some of the darkest and most remote regions of the outer solar system. Neptune is considered an "ice giant" because of its internal chemical composition.
The Big Ring is composed of numerous galaxies and galaxy clusters that form a continuous, almost perfect ring-like pattern in space. With its diameter of 1.3 billion light years and a circumference of 4 billion light years, it is one of the largest known structures within the observable universe. The structure is made up of many galaxy clusters ...
The Q2R ring's location coincides with Quaoar's 5:7 spin-orbit resonance at 2,525 ± 58 km (1,569 ± 36 mi). Compared to Q1R, the Q2R ring appears relatively uniform with a radial width of 10 km (6.2 mi). With an optical depth of 0.004, the Q2R ring is very tenuous and its opacity is comparable to the least dense part of the Q1R ring. [13]