Search results
Results From The WOW.Com Content Network
A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.
The Whittaker–Shannon interpolation formula can be used if the number of data points is infinite or if the function to be interpolated has compact support. Sometimes, we know not only the value of the function that we want to interpolate, at some points, but also its derivative. This leads to Hermite interpolation problems.
The function to be interpolated is known at given points (,,, …) and the interpolation problem consists of yielding values at arbitrary points (,,, …). Multivariate interpolation is particularly important in geostatistics, where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot ...
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.
Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions. Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around ...
Trilinear interpolation is a method of multivariate interpolation on a 3-dimensional regular grid. It approximates the value of a function at an intermediate point (,,) within the local axial rectangular prism linearly, using function data on the lattice points.
is a simple IDW weighting function, as defined by Shepard, [3] x denotes an interpolated (arbitrary) point, x i is an interpolating (known) point, is a given distance (metric operator) from the known point x i to the unknown point x, N is the total number of known points used in interpolation and is a positive real number, called the power ...