When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful ) has multiplicity above 1 for all prime factors.

  3. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  4. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    factors d(n) primorial ... 27 50400 5,2,2,1 10 108 28 ... It means that 1, 4, and 36 are the only square highly composite numbers.

  5. 36 (number) - Wikipedia

    en.wikipedia.org/wiki/36_(number)

    The number of domino tilings of a 4×4 checkerboard is 36. [10] Since it is possible to find sequences of 36 consecutive integers such that each inner member shares a factor with either the first or the last member, 36 is an ErdÅ‘s–Woods number. [11] The sum of the integers from 1 to 36 is 666 (see number of the beast). 36 is also a ...

  6. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Euler diagram of numbers under 100:

  7. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    The smallest abundant number not divisible by 2 or by 3 is 5391411025 whose distinct prime factors are 5, 7, 11, 13, 17, 19, 23, and 29 (sequence A047802 in the OEIS). An algorithm given by Iannucci in 2005 shows how to find the smallest abundant number not divisible by the first k primes. [1]

  8. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    This article gives a list of conversion factors for several physical quantities. ... ≡ 2.54 cm ≡ 1 ⁄ 36 yd ≡ 1 ... ≡ 1 ⁄ 72.27 in

  9. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Animation showing an application of the Euclidean algorithm to find the greatest common divisor of 62 and 36, which is 2. A more efficient method is the Euclidean algorithm , a variant in which the difference of the two numbers a and b is replaced by the remainder of the Euclidean division (also called division with remainder ) of a by b .