Search results
Results From The WOW.Com Content Network
In crystallography, atomic packing factor (APF), packing efficiency, or packing fraction is the fraction of volume in a crystal structure that is occupied by constituent particles. It is a dimensionless quantity and always less than unity. In atomic systems, by convention, the APF is determined by assuming that atoms are rigid spheres. The ...
Packing fraction may refer to: Packing density, the fraction of the space filled by objects comprising the packing; Atomic packing factor, the fraction of volume in a crystal structure that is occupied by the constituent particles; Packing fraction (mass spectrometry), the atomic mass defect per nucleon
The atomic packing factor is the proportion of space filled by these spheres which can be worked out by calculating the total volume of the spheres and dividing by the volume of the cell as follows: A P F = N p a r t i c l e V p a r t i c l e V unit cell {\displaystyle \mathrm {APF} ={\frac {N_{\mathrm {particle} }V_{\mathrm {particle} }}{V ...
Atomic packing factor (APF) is the fraction of volume that is occupied by atoms. The cP lattice has an APF of about 0.524, the cI lattice an APF of about 0.680, and the cF lattice an APF of about 0.740.
A packing density or packing fraction of a packing in some space is the fraction of the space filled by the figures making up the packing. In simplest terms, this is the ratio of the volume of bodies in a space to the volume of the space itself. In packing problems, the objective is usually to obtain a packing of the greatest possible density.
The hard sphere system exhibits a fluid-solid phase transition between the volume fractions of freezing and melting . The pressure diverges at random close packing η r c p ≈ 0.644 {\displaystyle \eta _{\mathrm {rcp} }\approx 0.644} for the metastable liquid branch and at close packing η c p = 2 π / 6 ≈ 0.74048 {\displaystyle \eta ...
Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.
The atomic packing factor of the diamond cubic structure (the proportion of space that would be filled by spheres that are centered on the vertices of the structure and are as large as possible without overlapping) is , [3] significantly smaller (indicating a less dense structure) than the packing factors for the face-centered and body-centered ...