Search results
Results From The WOW.Com Content Network
Version of the hypothesis implicating failure to generate more adipocytes in tissue expandability. The adipose tissue expandability hypothesis posits that metabolic dysregulation that appears to be caused by excess weight, such as type 2 diabetes [1] and non-alcoholic fatty liver disease, [2] are triggered when an individual's capacity for storing excess calories in the subcutaneous adipose ...
The progression from visceral fat to increased TNF-α to insulin resistance has some parallels to human development of metabolic syndrome. The increase in adipose tissue also increases the number of immune cells, which play a role in inflammation. Chronic inflammation contributes to an increased risk of hypertension, atherosclerosis and ...
Adipose tissue (also known as body fat or simply fat) is a loose connective tissue composed mostly of adipocytes. [1] [2] It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and a variety of immune cells such as adipose tissue macrophages.
Lipolysis / l ɪ ˈ p ɒ l ɪ s ɪ s / is the metabolic pathway through which lipid triglycerides are hydrolyzed into a glycerol and free fatty acids. It is used to mobilize stored energy during fasting or exercise, and usually occurs in fat adipocytes.
A large meta-analysis has shown that white adipose tissue cell size is dependent on measurement methods, adipose tissue depots, age, and body mass index; for the same degree of obesity, increases in fat cell size were also associated with the dysregulations in glucose and lipid metabolism. [2]
The Randle cycle, also known as the glucose fatty-acid cycle, is a metabolic process involving the cross inhibition of glucose and fatty acids for substrates. [1] It is theorized to play a role in explaining type 2 diabetes and insulin resistance. [2] [3] It was named for Philip Randle, who described it in 1963. [4]
It is PKA, activated by a hormone-induced signal transduction cascade, that phosphorylates and activates hormone sensitive lipase (HSL), hence the name. In addition to phosphorylating HSL, PKA phosphorylates perilipins on the surface of lipid droplets within adipose cells. This triggers them to "spread out" and allow for HSL to enter the lipid ...
GLUT4 has a Km value for glucose of about 5 mM, which as stated above is the normal blood glucose level in healthy individuals. GLUT4 is the most abundant glucose transporter in skeletal muscle and is thus considered to be rate limiting for glucose uptake and metabolism in resting muscles. [8]