When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Brasch et al. 2012 show how a generalized Fibonacci sequence also can be connected to the field of economics. [96] In particular, it is shown how a generalized Fibonacci sequence enters the control function of finite-horizon dynamic optimisation problems with one state and one control variable.

  3. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The term Fibonacci sequence is also applied more generally to any function from the integers to a field for which (+) = + (+).These functions are precisely those of the form () = () + (), so the Fibonacci sequences form a vector space with the functions () and () as a basis.

  4. Fibonacci coding - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_coding

    To encode an integer N: . Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.; If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0).

  5. Fibonacci search technique - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_search_technique

    Let k be defined as an element in F, the array of Fibonacci numbers. n = F m is the array size. If n is not a Fibonacci number, let F m be the smallest number in F that is greater than n. The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered ...

  6. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    In number theory, the nth Pisano period, written as π (n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers was noted by Joseph Louis Lagrange in 1774. [1] [2]

  7. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. [3] The first few Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... .

  8. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  9. Linear-feedback shift register - Wikipedia

    en.wikipedia.org/wiki/Linear-feedback_shift_register

    There can be more than one maximum-length tap sequence for a given LFSR length. Also, once one maximum-length tap sequence has been found, another automatically follows. If the tap sequence in an n-bit LFSR is [n, A, B, C, 0], where the 0 corresponds to the x 0 = 1 term, then the corresponding "mirror" sequence is [n, n − C, n − B, n − A, 0].