Search results
Results From The WOW.Com Content Network
Epitaxy can involve single-crystal structures, although grain-to-grain epitaxy has been observed in granular films. [1] [2] For most technological applications, single-domain epitaxy, which is the growth of an overlayer crystal with one well-defined orientation with respect to the substrate crystal, is preferred. Epitaxy can also play an ...
Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epitaxial film or epitaxial layer.
The term epitaxy comes from the Greek roots epi (ἐπί), meaning "above", and taxis (τάξις), meaning "an ordered manner". It can be translated as "arranging upon". The term homoepitaxy refers to the specific case in which a film of the same material is grown on a crystalline substrate. This technology is used, for instance, to grow a ...
Atomic layer epitaxy (ALE), [1] more generally known as atomic layer deposition (ALD), [2] is a specialized form of thin film growth that typically deposit alternating monolayers of two elements onto a substrate. The crystal lattice structure achieved is thin, uniform, and aligned with the structure of the substrate.
Solar cells, or photovoltaic cells (PV) for producing electric power from sunlight can be grown as thick epi wafers on a monocrystalline silicon "seed" wafer by chemical vapor deposition (CVD), and then detached as self-supporting wafers of some standard thickness (e.g., 250 μm) that can be manipulated by hand, and directly substituted for wafer cells cut from monocrystalline silicon ingots.
Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called precursors (also called "reactants"). These precursors react with the surface of a material one at a time in a ...
Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices , including transistors . [ 1 ] MBE is used to make diodes and MOSFETs (MOS field-effect transistors ) at microwave frequencies, and to manufacture the lasers used to read optical discs ...
Epitaxy is used to deposit very thin (micrometer to nanometer scale) layers of the same or different materials on the surface of an existing single crystal. [11] Applications of this technique lie in the areas of semiconductor production, with potential uses in other nanotechnological fields and catalysis.