When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.

  3. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Rutherford applied the principle of a radioactive element's half-life in studies of age determination of rocks by measuring the decay period of radium to lead-206. Half-life is constant over the lifetime of an exponentially decaying quantity, and it is a characteristic unit for the exponential decay equation. The accompanying table shows the ...

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.

  5. List of elements by stability of isotopes - Wikipedia

    en.wikipedia.org/wiki/List_of_elements_by...

    This is the longest half-life directly measured for any unstable isotope; [4] only the half-life of tellurium-128 is longer. [ citation needed ] Of the chemical elements, only 1 element ( tin ) has 10 such stable isotopes, 5 have 7 stable isotopes, 7 have 6 stable isotopes, 11 have 5 stable isotopes, 9 have 4 stable isotopes, 5 have 3 stable ...

  6. Bismuth-209 - Wikipedia

    en.wikipedia.org/wiki/Bismuth-209

    Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that 209 Bi undergoes alpha decay with a half-life of ≈19 exayears (1.9×10 19, or 19 quintillion years), [3] [4] over 10 9 times longer than the estimated age of the universe. [5]

  7. Island of stability - Wikipedia

    en.wikipedia.org/wiki/Island_of_stability

    In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides, separated from known stable and long-lived primordial radionuclides.

  8. Radionuclide - Wikipedia

    en.wikipedia.org/wiki/Radionuclide

    Radionuclide. A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons ...

  9. Iodine-131 - Wikipedia

    en.wikipedia.org/wiki/Iodine-131

    Iodine-131. Iodine-131 (131I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.