Search results
Results From The WOW.Com Content Network
The flames caused as a result of a fuel undergoing combustion (burning) Air pollution abatement equipment provides combustion control for industrial processes.. Combustion, or burning, [1] is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke.
Combustion is a chemical reaction that feeds a fire more heat and allows it to continue. Once a fire has started, the resulting exothermic chain reaction sustains the fire and allows it to continue until or unless at least one of the elements of the fire is blocked: foam can be used to deny the fire the oxygen it needs
In the combustion reaction, oxygen reacts with the fuel, and the point where exactly all oxygen is consumed and all fuel burned is defined as the stoichiometric point. With more oxygen (overstoichiometric combustion), some of it stays unreacted. Likewise, if the combustion is incomplete due to lack of sufficient oxygen, fuel remains unreacted.
A non-combustible material [17] is a substance that does not ignite, burn, support combustion, or release flammable vapors when subject to fire or heat, in the form in which it is used and under conditions anticipated. Any solid substance complying with either of two sets of passing criteria listed in Section 8 of ASTM E 136 when the substance ...
The combustion of a stoichiometric mixture of fuel and oxidizer (e.g. two moles of hydrogen and one mole of oxygen) in a steel container at 25 °C (77 °F) is initiated by an ignition device and the reactions allowed to complete. When hydrogen and oxygen react during combustion, water vapor is produced.
All alkanes react with oxygen in a combustion reaction, although they become increasingly difficult to ignite as the number of carbon atoms increases. The general equation for complete combustion is: C n H 2n+2 + ( 3 / 2 n + 1 / 2 ) O 2 → (n + 1) H 2 O + n CO 2 or C n H 2n+2 + ( 3n + 1 / 2 ) O 2 → (n + 1) H 2 O + n CO 2
In technical terms, the reaction zone (chemical combustion) is a self-driven shock wave where the reaction zone and the shock are coincident, and the chemical reaction is initiated by the compressive heating caused by the shock wave. The process is similar to ignition in a Diesel engine, but much more sudden and violent.
A thermite reaction using iron(III) oxide. The sparks flying outwards are globules of molten iron trailing smoke in their wake. A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. [1]