Search results
Results From The WOW.Com Content Network
Slater-type orbitals (STOs) or Slater-type functions (STFs) are functions used as atomic orbitals in the linear combination of atomic orbitals molecular orbital method. They are named after the physicist John C. Slater , who introduced them in 1930.
The Slater-type orbital (STO) is a form without radial nodes but decays from the nucleus as does a hydrogen-like orbital. The form of the Gaussian type orbital (Gaussians) has no radial nodes and decays as e − α r 2 {\displaystyle e^{-\alpha r^{2}}} .
It is a particular case of a Slater-type orbital (STO) in which the principal quantum number n is 1. The parameter ζ {\displaystyle \zeta } is called the Slater orbital exponent . Related sets of functions can be used to construct STO-nG basis sets which are used in quantum chemistry .
It shows the ground state configuration in terms of orbital occupancy, but it does not show the ground state in terms of the sequence of orbital energies as determined spectroscopically. For example, in the transition metals, the 4s orbital is of a higher energy than the 3d orbitals; and in the lanthanides, the 6s is higher than the 4f and 5d.
The possible orbital symmetries are listed in the table below. For example, an orbital of B 1 symmetry (called a b 1 orbital with a small b since it is a one-electron function) is multiplied by -1 under the symmetry operations C 2 (rotation about the 2-fold rotation axis) and σ v '(yz) (reflection in the molecular
STO-nG basis sets are minimal basis sets, where primitive Gaussian orbitals are fitted to a single Slater-type orbital (STO).originally took the values 2 – 6. They were first proposed by John Pople. A minimum basis set is where only sufficient orbitals are used to contain all the electrons in the neutral atom. Thus for the hydrogen atom, only a single 1s orbital is needed, while for a carbon ...
where n is the (true) principal quantum number, l the azimuthal quantum number, and f nl (r) is an oscillatory polynomial with n - l - 1 nodes. [5] Slater argued on the basis of previous calculations by Clarence Zener [ 6 ] that the presence of radial nodes was not required to obtain a reasonable approximation.
The atomic orbitals used are typically those of hydrogen-like atoms since these are known analytically i.e. Slater-type orbitals but other choices are possible such as the Gaussian functions from standard basis sets or the pseudo-atomic orbitals from plane-wave pseudopotentials. Example of a molecular orbital diagram.