Search results
Results From The WOW.Com Content Network
The physical basis of MRI is the spatial encoding of the nuclear magnetic resonance (NMR) signal obtainable from water protons (i.e. hydrogen nuclei) in biologic tissue. In terms of MRI, signals with different spatial encodings that are required for the reconstruction of a full image need to be acquired by generating multiple signals ...
[1] [2] Functional MRI has several benefits, such as its non-invasive quality, relatively high spatial resolution, and decent temporal resolution. This is due the influential development in the scanner hardware, where it now allows for technicians to retrieve higher resolution images in a shorter amount of time.
The first MR images of a human brain were obtained in 1978 by two groups of researchers at EMI Laboratories led by Ian Robert Young and Hugh Clow. [1] In 1986, Charles L. Dumoulin and Howard R. Hart at General Electric developed MR angiography, [2] and Denis Le Bihan obtained the first images and later patented diffusion MRI. [3]
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to form images of the organs in the body.
Real-time MRI of a human heart (2-chamber view) at 22 ms resolution [1] Real-time MRI of a vocal tract while singing, at 40 ms resolution. Real-time magnetic resonance imaging (RT-MRI) refers to the continuous monitoring of moving objects in real time. Traditionally, real-time MRI was possible only with low image quality or low temporal resolution.
Cardiac magnetic resonance imaging (cardiac MRI, CMR), also known as cardiovascular MRI, is a magnetic resonance imaging (MRI) technology used for non-invasive assessment of the function and structure of the cardiovascular system. [2]
EEG-fMRI (short for EEG-correlated fMRI or electroencephalography-correlated functional magnetic resonance imaging) is a multimodal neuroimaging technique whereby EEG and fMRI data are recorded synchronously for the study of electrical brain activity in correlation with haemodynamic changes in brain during the electrical activity, be it normal function or associated with disorders.
Steady-state free precession (SSFP) imaging is a magnetic resonance imaging (MRI) sequence which uses steady states of magnetizations. In general, SSFP MRI sequences are based on a (low flip angle) gradient echo MRI sequence with a short repetition time which in its generic form has been described as the FLASH MRI technique. While spoiled ...