Ad
related to: throttling meaning in thermodynamics engineering pdf notes
Search results
Results From The WOW.Com Content Network
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
If the throttling valve or device is located at the entry into a pressure vessel so that the flash evaporation occurs within the vessel, then the vessel is often referred to as a flash drum. [1] [2] If the saturated liquid is a single-component liquid (for example, propane or liquid ammonia), a part of the liquid immediately "flashes" into vapor.
The throttling process is a good example of an isoenthalpic process in which significant changes in pressure and temperature can occur to the fluid, and yet the net sum the associated terms in the energy balance is null, thus rendering the transformation isoenthalpic. The lifting of a relief (or safety) valve on a pressure vessel is an example ...
Pages for logged out editors learn more. Contributions; Talk; Throttling process (thermodynamics)
For thermodynamics, a natural process is a transfer between systems that increases the sum of their entropies, and is irreversible. [2] Natural processes may occur spontaneously upon the removal of a constraint, or upon some other thermodynamic operation , or may be triggered in a metastable or unstable system, as for example in the ...
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
Thermodynamic diagrams usually show a net of five different lines: isobars = lines of constant pressure; isotherms = lines of constant temperature; dry adiabats = lines of constant potential temperature representing the temperature of a rising parcel of dry air
The inversion temperature in thermodynamics and cryogenics is the critical temperature below which a non-ideal gas (all gases in reality) that is expanding at constant enthalpy will experience a temperature decrease, and above which will experience a temperature increase.