Search results
Results From The WOW.Com Content Network
Any conic section can be defined as the locus of points whose distances to a point (the focus) and a line (the directrix) are in a constant ratio. That ratio is called the eccentricity, commonly denoted as e. The eccentricity can also be defined in terms of the intersection of a plane and a double-napped cone associated with the conic section.
More generally, for any collection of points P i, weights w i, and constant C, one can define a circle as the locus of points X such that (,) =.. The director circle of an ellipse is a special case of this more general construction with two points P 1 and P 2 at the foci of the ellipse, weights w 1 = w 2 = 1, and C equal to the square of the major axis of the ellipse.
The free term of a reduced quadratic equation is always the product of its solutions. Hence, if the tangents meet at (x 0, y 0) orthogonally, the following equations hold: = = The last equation is equivalent to =, which is the equation of the directrix.
describes a right circular conoid with the unit circle of the x-y-plane as directrix and a directrix plane, which is parallel to the y--z-plane. Its axis is the line (,,) . Special features: The intersection with a horizontal plane is an ellipse.
The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.
The directrix is often taken as a plane curve, in a plane not containing the apex, but this is not a requirement. [1] In general, a conical surface consists of two congruent unbounded halves joined by the apex. Each half is called a nappe, and is the union of all the rays that start at the apex and pass through a point of some fixed space curve ...
In mathematics, a directrix is a curve associated with a process generating a geometric object, such as: Directrix (conic section) Directrix (generatrix)
A cone can be generated by moving a line (the generatrix) fixed at the future apex of the cone along a closed curve (the directrix); if that directrix is a circle perpendicular to the line connecting its center to the apex, the motion is rotation around a fixed axis and the resulting shape is a circular cone.