Search results
Results From The WOW.Com Content Network
An auxochrome is known as a functional group that produces a bathochromic shift, also known as red shift because it increases the wavelength of absorption, therefore moving closer to infrared light. Woodward−Fieser rules estimate the shift in wavelength of maximum absorption for several auxochromes attached to a conjugated system in an ...
Rubies, emeralds, and diamonds exhibit red fluorescence under long-wave UV, blue and sometimes green light; diamonds also emit light under X-ray radiation. Fluorescence in minerals is caused by a wide range of activators. In some cases, the concentration of the activator must be restricted to below a certain level, to prevent quenching of the ...
The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect , and gravitational potentials, which gravitationally redshift escaping ...
There are many ways in which atoms can be brought to an excited state. Interaction with electromagnetic radiation is used in fluorescence spectroscopy, protons or other heavier particles in particle-induced X-ray emission and electrons or X-ray photons in energy-dispersive X-ray spectroscopy or X-ray fluorescence. The simplest method is to heat ...
In spectroscopy, bathochromic shift (from Greek βαθύς (bathys) 'deep' and χρῶμα (chrōma) 'color'; hence less common alternate spelling "bathychromic") is a change of spectral band position in the absorption, reflectance, transmittance, or emission spectrum of a molecule to a longer wavelength (lower frequency). [1]
Fluorescence of different substances under UV light. Green is a fluorescein, red is Rhodamine B, yellow is Rhodamine 6G, blue is quinine, purple is a mixture of quinine and rhodamine 6g. Solutions are about 0.001% concentration in water. Fluorophore molecules could be either utilized alone, or serve as a fluorescent motif of a functional system.
Example of normal Stokes emission through fluorescence (left, red) and anti-Stokes emission (right, blue) through sensitized triplet-triplet annihilation based photon upconversion, samples excited with green light. Upconversion fluorescence. Optical fiber that contains infrared light shines with a blue color in the dark
where E is the energy of the quantum , f is the frequency of the light wave, h is the Planck constant, λ is the wavelength and c is the speed of light. The relationships between the energies of the various quantum states are treated by atomic orbital , molecular orbital , Ligand Field Theory and Crystal Field Theory .