When.com Web Search

  1. Ad

    related to: resting potential of neurons in humans worksheet solutions 1 2 6

Search results

  1. Results From The WOW.Com Content Network
  2. Resting potential - Wikipedia

    en.wikipedia.org/wiki/Resting_potential

    The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded membrane potential. The resting membrane potential has a value of approximately -70mV or -0.07V. [ 1 ]

  3. Threshold potential - Wikipedia

    en.wikipedia.org/wiki/Threshold_potential

    In neuroscience, threshold potentials are necessary to regulate and propagate signaling in both the central nervous system (CNS) and the peripheral nervous system (PNS). Most often, the threshold potential is a membrane potential value between –50 and –55 mV, [1] but can vary based upon several factors. A neuron 's resting membrane ...

  4. Voltage-gated sodium channel - Wikipedia

    en.wikipedia.org/wiki/Voltage-gated_sodium_channel

    Voltage-gated sodium channels (VGSCs), also known as voltage-dependent sodium channels (VDSCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the sodium ion Na +. They are the main channels involved in action potential of excitable cells.

  5. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    In non-excitable cells, and in excitable cells in their baseline states, the membrane potential is held at a relatively stable value, called the resting potential. For neurons, resting potential is defined as ranging from –80 to –70 millivolts; that is, the interior of a cell has a negative baseline voltage of a bit less than one-tenth of a ...

  6. Sodium channel - Wikipedia

    en.wikipedia.org/wiki/Sodium_channel

    The voltage-dependence of steady-state fast inactivation is unchanged in Na v 1.1–Na v 1.4, but steady-state fast inactivation in Na v 1.5 is depolarized. Hence, among the sodium channels that have been studied so far, Na v 1.4 is the least and Na v 1.5 is the most proton-sensitive subtypes.

  7. End-plate potential - Wikipedia

    en.wikipedia.org/wiki/End-plate_potential

    Both are taken from recordings at the mouse neuromuscular junction. End plate potentials (EPPs) are the voltages which cause depolarization of skeletal muscle fibers caused by neurotransmitters binding to the postsynaptic membrane in the neuromuscular junction. They are called "end plates" because the postsynaptic terminals of muscle fibers ...

  8. Biological neuron model - Wikipedia

    en.wikipedia.org/wiki/Biological_neuron_model

    Biological neuron models, also known as spiking neuron models, [1] are mathematical descriptions of the conduction of electrical signals in neurons. Neurons (or nerve cells) are electrically excitable cells within the nervous system, able to fire electric signals, called action potentials, across a neural network.

  9. Postsynaptic potential - Wikipedia

    en.wikipedia.org/wiki/Postsynaptic_potential

    Postsynaptic potential. Postsynaptic potentials are changes in the membrane potential of the postsynaptic terminal of a chemical synapse. Postsynaptic potentials are graded potentials, and should not be confused with action potentials although their function is to initiate or inhibit action potentials. They are caused by the presynaptic neuron ...