When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by ...

  3. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...

  4. Newton (unit) - Wikipedia

    en.wikipedia.org/wiki/Newton_(unit)

    0.224809 lbf. The newton (symbol: N) is the unit of force in the International System of Units (SI). It is defined as , the force which gives a mass of 1 kilogram an acceleration of 1 metre per second squared. It is named after Isaac Newton in recognition of his work on classical mechanics, specifically his second law of motion.

  5. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    In scientific contexts, mass is the amount of "matter" in an object (though "matter" may be difficult to define), but weight is the force exerted on an object's matter by gravity. [1] At the Earth 's surface, an object whose mass is exactly one kilogram weighs approximately 9.81 newtons, the product of its mass and the gravitational field ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    The first general equation of motion developed was Newton's second law of motion. In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13]: 1112. The force in the equation is not the force the object exerts.

  7. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the ...

  8. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    It is also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant, [a] denoted by the capital letter G. In Newton's law, it is the proportionality constant connecting the gravitational force between two bodies with the product of their masses and the inverse square of their ...

  9. Fictitious force - Wikipedia

    en.wikipedia.org/wiki/Fictitious_force

    The net force upon the object according to observers in the rotating frame is F B = ma B. If their observations are to result in the correct force on the object when using Newton's laws, they must consider that the additional force F fict is present, so the end result is F B = F A + F fict. Thus, the fictitious force used by observers in B to ...