Search results
Results From The WOW.Com Content Network
One application is the definition of inverse trigonometric functions. For example, the cosine function is injective when restricted to the interval [0, π]. The image of this restriction is the interval [−1, 1], and thus the restriction has an inverse function from [−1, 1] to [0, π], which is called arccosine and is denoted arccos.
Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise. Minkowski's question mark function: Derivatives vanish on the rationals. Weierstrass function: is an example of continuous function that is nowhere differentiable
Nowhere continuous function: is not continuous at any point of its domain; for example, the Dirichlet function. Homeomorphism: is a bijective function that is also continuous, and whose inverse is continuous. Open function: maps open sets to open sets. Closed function: maps closed sets to closed sets.
A complex valued function is conjugate symmetric if and only if its real part is an even function and its imaginary part is an odd function. A typical example of a conjugate symmetric function is the cis function = + Conjugate antisymmetry:
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).
At the same time, the mapping of a function to the value of the function at a point is a functional; here, is a parameter. Provided that f {\displaystyle f} is a linear function from a vector space to the underlying scalar field, the above linear maps are dual to each other, and in functional analysis both are called linear functionals .
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
As an example, the function H(t) denoting the height of a growing flower at time t would be considered continuous. In contrast, the function M(t) denoting the amount of money in a bank account at time t would be considered discontinuous since it "jumps" at each point in time when money is deposited or withdrawn.