Search results
Results From The WOW.Com Content Network
In contrast to indirect methanol fuel cells, where methanol is reacted to hydrogen by steam reforming, DMFCs use a methanol solution (usually around 1M, i.e. about 3% in mass) to carry the reactant into the cell; common operating temperatures are in the range 50 to 120 °C (122 to 248 °F), where high temperatures are usually pressurized.
Demonstration model of a direct methanol fuel cell (black layered cube) in its enclosure Scheme of a proton-conducting fuel cell. A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) [1] into electricity through a pair of redox reactions. [2]
The fuel cartridge stores the methanol fuel. Depending on the system design either 100% methanol (IMPCA industrial standard) or a mixture of methanol with up to 40 vol% water is usually used as fuel for the RMFC system. 100% methanol results in lower fuel consumption than water-methanol mixture (Premix) but goes along with higher fuel cell system complexity for condensing of cathode moisture.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Methanol reformers are used as a component of stationary fuel cell systems or hydrogen fuel cell-powered vehicles (see Reformed methanol fuel cell). A prototype car, the NECAR 5, was introduced by Daimler-Chrysler in the year 2000. The primary advantage of a vehicle with a reformer is that it does not need a pressurized gas tank to store ...
In 2007 ethanol was priced at 3 to 4 dollars per gallon (0.8 to 1.05 dollars per liter) at the pump, while methanol made from natural gas remains at 47 cents per gallon (12.5 cents per liter) in bulk, not at the pump. Presently there are no operating gas stations in California supplying methanol in their pumps. Rep.
Membraneless Fuel Cells convert stored chemical energy into electrical energy without the use of a conducting membrane as with other types of Fuel Cells.In Laminar flow fuel cells (LFFC) this is achieved by exploiting the phenomenon of non-mixing laminar flows where the interface between the two flows works as a proton/ion conductor.
Direct-methanol fuel cells are unique in their low temperature, atmospheric pressure operation, which lets them be greatly miniaturized. [44] [45] This, combined with the relatively easy and safe storage and handling of methanol, may open the possibility of fuel cell-powered consumer electronics, such as laptop computers and mobile phones. [46]