Search results
Results From The WOW.Com Content Network
Triplet oxygen, 3 O 2, refers to the S = 1 electronic ground state of molecular oxygen (dioxygen). Molecules of triplet oxygen contain two unpaired electrons, making triplet oxygen an unusual example of a stable and commonly encountered diradical : [ 2 ] it is more stable as a triplet than a singlet .
The energy difference of 94.3 kJ/mol between ground state and singlet oxygen corresponds to a forbidden singlet-triplet transition in the near-infrared at ~1270 nm. [12] As a consequence, singlet oxygen in the gas phase is relatively long lived (54-86 milliseconds), [ 13 ] although interaction with solvents reduces the lifetime to microseconds ...
Singlet oxygen is the common name used for the two metastable states of molecular oxygen (O 2) with higher energy than the ground state triplet oxygen. Because of the differences in their electron shells, singlet oxygen has different chemical and physical properties than triplet oxygen, including absorbing and emitting light at different ...
In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O 2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H 2 O 2), superoxide (O 2 −), [1] hydroxyl radical (OH.), and singlet oxygen(1 O 2). [2] ROS are pervasive because they are readily produced from O 2 ...
As in diboron, these two unpaired electrons have the same spin in the ground state, which is a paramagnetic diradical triplet oxygen. The first excited state has both HOMO electrons paired in one orbital with opposite spins, and is known as singlet oxygen. MO diagram of dioxygen triplet ground state
The triplet-singlet transition is also "forbidden". This presents an additional barrier to the reaction. It also means molecular oxygen is relatively unreactive at room temperature except in the presence of a catalytic heavy atom such as iron or copper. Combustion consists of various radical chain reactions that the singlet radical can initiate.
The molecule, therefore, has two unpaired electrons and is in a triplet state. In contrast, the first and second excited states of dioxygen are both states of singlet oxygen. Each has two electrons of opposite spin in the π* level so that S = 0 and the multiplicity is 2S + 1 = 1 in consequence.
Singlet oxygen is a name given to several higher-energy species of molecular O 2 in which all the electron spins are paired. It is much more reactive with common organic molecules than is normal (triplet) molecular oxygen. In nature, singlet oxygen is commonly formed from water during photosynthesis, using the energy of sunlight. [38]