Search results
Results From The WOW.Com Content Network
For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing system. Thus two indices are used for a two-dimensional array, three for a three-dimensional array, and n for an n-dimensional array.
Programming languages or their standard libraries that support multi-dimensional arrays typically have a native row-major or column-major storage order for these arrays. Row-major order is used in C / C++ / Objective-C (for C-style arrays), PL/I , [ 4 ] Pascal , [ 5 ] Speakeasy , [ citation needed ] and SAS .
This representation for multi-dimensional arrays is quite prevalent in C and C++ software. However, C and C++ will use a linear indexing formula for multi-dimensional arrays that are declared with compile time constant size, e.g. by int A [10][20] or int A [m][n], instead of the traditional int ** A. [8] The C99 standard introduced Variable ...
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
For example, CSC is (val, row_ind, col_ptr), where val is an array of the (top-to-bottom, then left-to-right) non-zero values of the matrix; row_ind is the row indices corresponding to the values; and, col_ptr is the list of val indexes where each column starts. The name is based on the fact that column index information is compressed relative ...
Things become more interesting when we consider arrays with more than one index, for example, a two-dimensional table. We have three possibilities: make the two-dimensional array one-dimensional by computing a single index from the two; consider a one-dimensional array where each element is another one-dimensional array, i.e. an array of arrays
Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing over elements collapses the input array by 1 dimension.
In contrast, two-dimensional arrays are always rectangular [4] so jagged arrays should not be confused with multidimensional arrays, but the former is often used to emulate the latter. Arrays of arrays in languages such as Java, PHP, Python (multidimensional lists), Ruby, C#.NET, Visual Basic.NET , Perl, JavaScript, Objective-C, Swift, and ...