When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    A powder X-ray diffractometer in motion. X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract in specific directions. By measuring the angles and intensities of the X-ray diffraction, a crystallographer ...

  3. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    The glancing angle θ (see figure on the right, and note that this differs from the convention in Snell's law where θ is measured from the surface normal), the wavelength λ, and the "grating constant" d of the crystal are connected by the relation: [11]: 1026 = ⁡ where is the diffraction order (= is first order, = is second order, [10]: 221 ...

  4. Synchrotron light source - Wikipedia

    en.wikipedia.org/wiki/Synchrotron_light_source

    X-ray nanoprobe beamline at the Advanced Photon Source. Synchrotron X-rays can be used for traditional X-ray imaging, phase-contrast X-ray imaging, and tomography. The Ångström-scale wavelength of X-rays enables imaging well below the diffraction limit of visible light, but practically the smallest resolution so far achieved is about 30 nm. [19]

  5. Characteristic X-ray - Wikipedia

    en.wikipedia.org/wiki/Characteristic_X-ray

    Characteristic X-ray. Characteristic X-rays are emitted when outer- shell electrons fill a vacancy in the inner shell of an atom, releasing X-rays in a pattern that is "characteristic" to each element. Characteristic X-rays were discovered by Charles Glover Barkla in 1909, [1] who later won the Nobel Prize in Physics for his discovery in 1917.

  6. X-ray optics - Wikipedia

    en.wikipedia.org/wiki/X-ray_optics

    X-ray optics is the branch of optics dealing with X-rays, rather than visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction , X-ray crystallography , X-ray fluorescence , small-angle X-ray scattering , X-ray microscopy , X-ray phase-contrast imaging , and X-ray ...

  7. Angstrom - Wikipedia

    en.wikipedia.org/wiki/Angstrom

    Portrait of Anders Ångström [15]. In 1868, Swedish physicist Anders Jonas Ångström created a chart of the spectrum of sunlight, in which he expressed the wavelengths of electromagnetic radiation in the electromagnetic spectrum in multiples of one ten-millionth of a millimetre (or 10 −7 mm.) [16] [17] Ångström's chart and table of wavelengths in the solar spectrum became widely used in ...

  8. Moseley's law - Wikipedia

    en.wikipedia.org/wiki/Moseley's_law

    Moseley's law. Photographic recording of Kα and Kβ X-ray emission lines for a range of elements; note that for the dispersive element used, the line position is proportional to the wavelength (not energy) Moseley's law is an empirical law concerning the characteristic X-rays emitted by atoms. The law had been discovered and published by the ...

  9. X-ray - Wikipedia

    en.wikipedia.org/wiki/X-ray

    Natural color X-ray photogram of a wine scene. Note the edges of hollow cylinders as compared to the solid candle. William Coolidge explains medical imaging and X-rays.. An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays.