When.com Web Search

  1. Ad

    related to: 3 phase and 2 difference equation formula excel

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematics of three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_three-phase...

    Mathematics and basic principles of three-phase electric power. One voltage cycle of a three-phase system, labeled 0 to 360° (2π radians) along the time axis. The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system.

  3. Symmetrical components - Wikipedia

    en.wikipedia.org/wiki/Symmetrical_components

    Symmetrical components are most commonly used for analysis of three-phase electrical power systems. The voltage or current of a three-phase system at some point can be indicated by three phasors, called the three components of the voltage or the current. This article discusses voltage; however, the same considerations also apply to current.

  4. Three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Three-phase_electric_power

    The phase angle difference between voltage and current of each phase is not necessarily 0 and depends on the type of load impedance, Z y. Inductive and capacitive loads will cause current to either lag or lead the voltage. However, the relative phase angle between each pair of lines (1 to 2, 2 to 3, and 3 to 1) will still be −120°.

  5. High-leg delta - Wikipedia

    en.wikipedia.org/wiki/High-leg_delta

    The voltages between the three phases are the same in magnitude, however the voltage magnitudes between a particular phase and the neutral vary. The phase-to-neutral voltage of two of the phases will be half of the phase-to-phase voltage. The remaining phase-to-neutral voltage will be √ 3 /2 the phase-to-phase voltage. So if A–B, B–C and ...

  6. Lissajous curve - Wikipedia

    en.wikipedia.org/wiki/Lissajous_curve

    A Lissajous curve / ˈlɪsəʒuː /, also known as Lissajous figure or Bowditch curve / ˈbaʊdɪtʃ /, is the graph of a system of parametric equations. sin ⁡ t + {\displaystyle x=A\sin (at+\delta ),\quad y=B\sin (bt),} which describe the superposition of two perpendicular oscillations in x and y directions of different angular frequency (a ...

  7. Per-unit system - Wikipedia

    en.wikipedia.org/wiki/Per-unit_system

    Per-unit system. In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to the other.

  8. Alpha–beta transformation - Wikipedia

    en.wikipedia.org/wiki/Alpha–beta_transformation

    In electrical engineering, the alpha-beta ( ) transformation (also known as the Clarke transformation) is a mathematical transformation employed to simplify the analysis of three-phase circuits. Conceptually it is similar to the dq0 transformation. One very useful application of the transformation is the generation of the reference signal used ...

  9. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    Lyapunov exponent. In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with initial separation vector diverge (provided that the divergence can be treated ...