Search results
Results From The WOW.Com Content Network
The following tables list the computational complexity of various algorithms for common mathematical operations. Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, below ...
Invertible matrix. In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. Invertible matrices are the same size as their inverse.
Woodbury matrix identity. In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1][2] – says that the inverse of a rank- k correction of some matrix can be computed by doing a rank- k correction to the inverse of the original matrix. Alternative names for this formula are the matrix ...
Array programming. In computer science, array programming refers to solutions that allow the application of operations to an entire set of values at once. Such solutions are commonly used in scientific and engineering settings. Modern programming languages that support array programming (also known as vector or multidimensional languages) have ...
A sparse matrix obtained when solving a finite element problem in two dimensions. The non-zero elements are shown in black. In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. [1] There is no strict definition regarding the proportion of zero-value elements for a ...
The Schur complement arises naturally in solving a system of linear equations such as [7] Assuming that the submatrix is invertible, we can eliminate from the equations, as follows. Substituting this expression into the second equation yields. {\displaystyle \left (D-CA^ {-1}B\right)y=v-CA^ {-1}u.} We refer to this as the reduced equation ...
numpy.org. NumPy (pronounced / ˈnʌmpaɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3] The predecessor of NumPy, Numeric, was originally created by Jim Hugunin with ...
Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]