When.com Web Search

  1. Ads

    related to: point plane line drawing geometry examples easy and free

Search results

  1. Results From The WOW.Com Content Network
  2. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    (x 0, y 0, z 0) is any point on the line. a, b, and c are related to the slope of the line, such that the direction vector (a, b, c) is parallel to the line. Parametric equations for lines in higher dimensions are similar in that they are based on the specification of one point on the line and a direction vector.

  3. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    As any line in this extension of σ corresponds to a plane through O, and since any pair of such planes intersects in a line through O, one can conclude that any pair of lines in the extension intersect: the point of intersection lies where the plane intersection meets σ or the line at infinity. Thus the axiom of projective geometry, requiring ...

  4. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    In this expanded plane, we define the polar of the point O to be the line at infinity (and O is the pole of the line at infinity), and the poles of the lines through O are the points of infinity where, if a line has slope s (≠ 0) its pole is the infinite point associated to the parallel class of lines with slope −1/s.

  5. Real projective plane - Wikipedia

    en.wikipedia.org/wiki/Real_projective_plane

    The points with coordinates [x : y : 1] are the usual real plane, called the finite part of the projective plane, and points with coordinates [x : y : 0], called points at infinity or ideal points, constitute a line called the line at infinity. (The homogeneous coordinates [0 : 0 : 0] do not represent any point.)

  6. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Alternatively, a line can be described as the intersection of two planes. Let L be a line contained in distinct planes a and b with homogeneous coefficients (a 0 : a 1 : a 2 : a 3) and (b 0 : b 1 : b 2 : b 3), respectively. (The first plane equation is =, for example.)

  7. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...