When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Meissel–Lehmer algorithm - Wikipedia

    en.wikipedia.org/wiki/Meissel–Lehmer_algorithm

    Meissel already found that for k ≥ 3, P k (x, a) = 0 if a = π(x 1/3).He used the resulting equation for calculations of π(x) for big values of x. [1]Meissel calculated π(x) for values of x up to 10 9, but he narrowly missed the correct result for the biggest value of x.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  5. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  6. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.

  7. APL syntax and symbols - Wikipedia

    en.wikipedia.org/wiki/APL_syntax_and_symbols

    ⎕CR 'PrimeNumbers' ⍝ Show APL user-function PrimeNumbers Primes ← PrimeNumbers N ⍝ Function takes one right arg N (e.g., show prime numbers for 1 ... int N) Primes ← (2 =+ ⌿ 0 = (⍳ N) ∘. |⍳ N) / ⍳ N ⍝ The Ken Iverson one-liner PrimeNumbers 100 ⍝ Show all prime numbers from 1 to 100 2 3 5 7 11 13 17 19 23 29 31 37 41 43 ...

  8. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.

  9. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.