When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chemical polarity - Wikipedia

    en.wikipedia.org/wiki/Chemical_polarity

    Due to the polar nature of the water molecule itself, other polar molecules are generally able to dissolve in water. Most nonpolar molecules are water-insoluble (hydrophobic) at room temperature. Many nonpolar organic solvents, such as turpentine, are able to dissolve nonpolar substances.

  3. Hydrophile - Wikipedia

    en.wikipedia.org/wiki/Hydrophile

    An example of these amphiphilic molecules is the lipids that comprise the cell membrane. Another example is soap, which has a hydrophilic head and a hydrophobic tail, allowing it to dissolve in both water and oil. Hydrophilic and hydrophobic molecules are also known as polar molecules and nonpolar molecules, respectively. Some hydrophilic ...

  4. Hydrophobic effect - Wikipedia

    en.wikipedia.org/wiki/Hydrophobic_effect

    The hydrophobic effect was found to be entropy-driven at room temperature because of the reduced mobility of water molecules in the solvation shell of the non-polar solute; however, the enthalpic component of transfer energy was found to be favorable, meaning it strengthened water-water hydrogen bonds in the solvation shell due to the reduced ...

  5. Hydrophobe - Wikipedia

    en.wikipedia.org/wiki/Hydrophobe

    Hydrophobic molecules tend to be nonpolar and, thus, prefer other neutral molecules and nonpolar solvents. Because water molecules are polar, hydrophobes do not dissolve well among them. Hydrophobic molecules in water often cluster together, forming micelles. Water on hydrophobic surfaces will exhibit a high contact angle.

  6. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    This phenomenon leads to minimum exposed surface area of non-polar molecules to the polar water molecules (typically spherical droplets), and is commonly used in biochemistry to study protein folding and other various biological phenomenon. [22] The effect is also commonly seen when mixing various oils (including cooking oil) and water.

  7. Van der Waals force - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_force

    The interactions (2) and (3) are labelled polar Interactions. Dispersion (usually named London dispersion interactions after Fritz London), which is the attractive interaction between any pair of molecules, including non-polar atoms, arising from the interactions of instantaneous multipoles.

  8. Intermolecular force - Wikipedia

    en.wikipedia.org/wiki/Intermolecular_force

    The polar water molecules surround themselves around ions in water and the energy released during the process is known as hydration enthalpy. The interaction has its immense importance in justifying the stability of various ions (like Cu 2+) in water. An ion–induced dipole force consists of an ion and a non-polar molecule interacting.

  9. Functional group - Wikipedia

    en.wikipedia.org/wiki/Functional_group

    Plus, when functional groups are more electronegative than atoms they attach to, the functional groups will become polar, and the otherwise nonpolar molecules containing these functional groups become polar and so become soluble in some aqueous environment.