Ad
related to: function of stomata
Search results
Results From The WOW.Com Content Network
Stoma in a tomato leaf shown via colorized scanning electron microscope image A stoma in horizontal cross section The underside of a leaf. In this species (Tradescantia zebrina) the guard cells of the stomata are green because they contain chlorophyll while the epidermal cells are chlorophyll-free and contain red pigments.
Guard cells are cells surrounding each stoma. They help to regulate the rate of transpiration by opening and closing the stomata. Light is the main trigger for the opening or closing. [citation needed] Each guard cell has a relatively thick and thinner cuticle [clarification needed] on the pore-side and a thin one opposite it. As water enters ...
The stomata complex regulates the exchange of gases and water vapor between the outside air and the interior of the leaf. Typically, the stomata are more numerous over the abaxial (lower) epidermis of the leaf than the (adaxial) upper epidermis. An exception is floating leaves where most or all stomata are on the upper surface.
The stoma is usually covered with a removable pouching system (adhesive or mechanical) that collects and contains the output for later disposal. Modern pouching systems enable most individuals to resume normal activities and lifestyles after surgery, often with no outward physical evidence of the stoma or its pouching system.
Stomatal conductance is a function of the density, size and degree of opening of the stomata; with more open stomata allowing greater conductance, and consequently indicating that photosynthesis and transpiration rates are potentially higher. Therefore, stomatal opening and closing has a direct relationship to stomatal conductance.
The pores or stomata of the epidermis open into substomatal chambers, which are connected to the intercellular air spaces between the spongy and palisade mesophyll cell, so that oxygen, carbon dioxide and water vapor can diffuse into and out of the leaf and access the mesophyll cells during respiration, photosynthesis and transpiration.
In plants, the substomatal cavity is the cavity located immediately proximal to the stoma. It acts as a diffusion chamber connected with intercellular air spaces and allows rapid diffusion of carbon dioxide and other gases (such as plant pheromones ) in and out of plant cells .
They also separate stomata apart from each other as stomata have at least one pavement cell between each other. [4] They do not have a regular shape. Rather, their irregular shapes help them to interlock with each other like puzzle pieces to form a sturdy layer. [5]