When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    The image of the function is the set of all output values it may produce, that is, the image of . The preimage of f {\displaystyle f} , that is, the preimage of Y {\displaystyle Y} under f {\displaystyle f} , always equals X {\displaystyle X} (the domain of f {\displaystyle f} ); therefore, the former notion is rarely used.

  3. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value. In the latter case, the function is a constant function. The preimage of a given real number c is called a level set. It is the set of the solutions of the equation f(x 1, x 2, …, x n) = c.

  4. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    This function maps each image to its unique preimage. The composition of two bijections is again a bijection, but if g ∘ f {\displaystyle g\circ f} is a bijection, then it can only be concluded that f {\displaystyle f} is injective and g {\displaystyle g} is surjective (see the figure at right and the remarks above regarding injections and ...

  5. Preimage attack - Wikipedia

    en.wikipedia.org/wiki/Preimage_attack

    Second-preimage resistance implies preimage resistance only if the size of the hash function's inputs can be substantially (e.g., factor 2) larger than the size of the hash function's outputs. [1] Conversely, a second-preimage attack implies a collision attack (trivially, since, in addition to x′, x is already known right from the start).

  6. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    If and are the domain and image of , respectively, then the fibers of are the sets in {():} = {{: =}:}which is a partition of the domain set .Note that must be restricted to the image set of , since otherwise () would be the empty set which is not allowed in a partition.

  7. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    On the other hand, the inverse image or preimage under f of an element y of the codomain Y is the set of all elements of the domain X whose images under f equal y. [6] In symbols, the preimage of y is denoted by f − 1 ( y ) {\displaystyle f^{-1}(y)} and is given by the equation

  8. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    Let V and W be vector spaces over a field (or more generally, modules over a ring) and let T be a linear map from V to W.If 0 W is the zero vector of W, then the kernel of T is the preimage of the zero subspace {0 W}; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0 W.

  9. Preimage theorem - Wikipedia

    en.wikipedia.org/wiki/Preimage_theorem

    In mathematics, particularly in the field of differential topology, the preimage theorem is a variation of the implicit function theorem concerning the preimage of particular points in a manifold under the action of a smooth map. [1] [2]