Search results
Results From The WOW.Com Content Network
The confidence interval can be expressed in terms of a long-run frequency in repeated samples (or in resampling): "Were this procedure to be repeated on numerous samples, the proportion of calculated 95% confidence intervals that encompassed the true value of the population parameter would tend toward 95%."
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
By a similar argument, the numerator values of 3.51, 4.61, and 5.3 may be used for the 97%, 99%, and 99.5% confidence intervals, respectively, and in general the upper end of the confidence interval can be given as (), where is the desired confidence level.
a) The expression inside the square root has to be positive, or else the resulting interval will be imaginary. b) When g is very close to 1, the confidence interval is infinite. c) When g is greater than 1, the overall divisor outside the square brackets is negative and the confidence interval is exclusive.
A confidence interval states there is a 100γ% confidence that the parameter of interest is within a lower and upper bound. A common misconception of confidence intervals is 100γ% of the data set fits within or above/below the bounds, this is referred to as a tolerance interval, which is discussed below.
By contrast, the (true) coverage probability is the actual probability that the interval contains the parameter. If all assumptions used in deriving a confidence interval are met, the nominal coverage probability will equal the coverage probability (termed "true" or "actual" coverage probability for emphasis).