Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
Geometric interpretation of the covariance example. Each cuboid is the axis-aligned bounding box of its point (x, y, f (x, y)), and the X and Y means (magenta point). The covariance is the sum of the volumes of the cuboids in the 1st and 3rd quadrants (red) and in the 2nd and 4th (blue).
In statistics, the Matérn covariance, also called the Matérn kernel, [1] is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn. [2]
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
i.e., the inverse-gamma distribution, where () is the ordinary Gamma function. The Inverse Wishart distribution is a special case of the inverse matrix gamma distribution when the shape parameter α = ν 2 {\displaystyle \alpha ={\frac {\nu }{2}}} and the scale parameter β = 2 {\displaystyle \beta =2} .
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.