When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degeneracy (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(graph_theory)

    In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has at least one vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate.

  3. Core (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Core_(graph_theory)

    Any complete graph is a core. A cycle of odd length is a core. A graph is a core if and only if the core of is equal to . Every two cycles of even length, and more generally every two bipartite graphs are hom-equivalent. The core of each of these graphs is the two-vertex complete graph K 2.

  4. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    The complete graph on n vertices is denoted by K n.Some sources claim that the letter K in this notation stands for the German word komplett, [4] but the German name for a complete graph, vollständiger Graph, does not contain the letter K, and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory.

  5. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A graph is planar if it contains as a minor neither the complete bipartite graph K 3,3 (see the Three-cottage problem) nor the complete graph K 5. A similar problem, the subdivision containment problem, is to find a fixed graph as a subdivision of a given graph.

  6. Structural cohesion - Wikipedia

    en.wikipedia.org/wiki/Structural_cohesion

    It is also useful to know that k-cohesive graphs (or k-components) are always a subgraph of a k-core, although a k-core is not always k-cohesive. A k-core is simply a subgraph in which all nodes have at least k neighbors but it need not even be connected.

  7. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    Graph enumeration is the problem of counting the graphs in a given class of graphs, as a function of their order. More generally, enumeration problems can refer either to problems of counting a certain class of combinatorial objects (such as cliques, independent sets, colorings, or spanning trees), or of algorithmically listing all such objects.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    Given a graph G and given a set L(v) of colors for each vertex v (called a list), a list coloring is a choice function that maps every vertex v to a color in the list L(v).As with graph coloring, a list coloring is generally assumed to be proper, meaning no two adjacent vertices receive the same color.