When.com Web Search

  1. Ads

    related to: function of transmission electron microscope

Search results

  1. Results From The WOW.Com Content Network
  2. Transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Transmission_electron...

    Transmission electron microscopes are capable of imaging at a significantly higher resolution than light microscopes, owing to the smaller de Broglie wavelength of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a ...

  3. Electron microscope - Wikipedia

    en.wikipedia.org/wiki/Electron_microscope

    Reproduction of an early electron microscope constructed by Ernst Ruska in the 1930s. Many developments laid the groundwork of the electron optics used in microscopes. [2] One significant step was the work of Hertz in 1883 [3] who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam.

  4. High-resolution transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/High-resolution...

    High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. [ 1 ] [ 2 ] It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp 2 -bonded carbon (e.g ...

  5. Scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_transmission...

    A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused ...

  6. Contrast transfer function - Wikipedia

    en.wikipedia.org/wiki/Contrast_transfer_function

    The effect of the contrast transfer function can be seen in the alternating light and dark rings (Thon rings), which show the relation between contrast and spatial frequency. The contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample.

  7. Aberration-Corrected Transmission Electron Microscopy

    en.wikipedia.org/wiki/Aberration-Corrected...

    The Transmission Electron Aberration-Corrected Microscope (TEAM) project was a collaborative effort between Lawrence Berkeley National Laboratory (LBNL), Argonne National Laboratory (ANL), Brookhaven National Laboratory, Oak Ridge National Laboratory, and the University of Illinois, Urbana-Chamaign [21] with the technical goal of reaching ...

  8. Scanning electron microscope - Wikipedia

    en.wikipedia.org/wiki/Scanning_electron_microscope

    An account of the early history of scanning electron microscopy has been presented by McMullan. [2] [3] Although Max Knoll produced a photo with a 50 mm object-field-width showing channeling contrast by the use of an electron beam scanner, [4] it was Manfred von Ardenne who in 1937 invented [5] a microscope with high resolution by scanning a very small raster with a demagnified and finely ...

  9. Microscopy - Wikipedia

    en.wikipedia.org/wiki/Microscopy

    Transmission electron microscopy (TEM) is quite similar to the compound light microscope, by sending an electron beam through a very thin slice of the specimen. The resolution limit in 2005 was around 0.05 [ dubious – discuss ] nanometer and has not increased appreciably since that time.