When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5): = /

  3. Margin of error - Wikipedia

    en.wikipedia.org/wiki/Margin_of_error

    For a confidence level, there is a corresponding confidence interval about the mean , that is, the interval [, +] within which values of should fall with probability . Precise values of z γ {\displaystyle z_{\gamma }} are given by the quantile function of the normal distribution (which the 68–95–99.7 rule approximates).

  4. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    Factors affecting the width of the CI include the sample size, the variability in the sample, and the confidence level. [4] All else being the same, a larger sample produces a narrower confidence interval, greater variability in the sample produces a wider confidence interval, and a higher confidence level produces a wider confidence interval. [5]

  5. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Confidence intervals should be valid or consistent, i.e., the probability a parameter is in a confidence interval with nominal level should be equal to or at least converge in probability to . The latter criteria is both refined and expanded using the framework of Hall. [ 41 ]

  6. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr(X = 0) = 0.05 and hence (1−p) n = .05 so n ln(1–p) = ln .05 ≈ −2

  7. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    The effective sample size, ... the correct population-level variance, Kish's formula for the design ... to construct confidence intervals based on the ...

  8. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes.

  9. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    Let's say we have a sample with size 11, sample mean 10, and sample variance 2. For 90% confidence with 10 degrees of freedom, the one-sided t value from the table is 1.372 . Then with confidence interval calculated from ¯, , we determine that with 90% confidence we have a true mean lying below