Search results
Results From The WOW.Com Content Network
In survival analysis, the hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions characterised by two distinct levels of a treatment variable of interest. For example, in a clinical study of a drug, the treated population may die at twice the rate of the control population.
The hazard ratio is the quantity (), which is = in the above example. From the last calculation above, an interpretation of this is as the ratio of hazards between two "subjects" that have their variables differ by one unit: if P i = P j + 1 {\displaystyle P_{i}=P_{j}+1} , then exp ( β 1 ( P i − P j ) = exp ( β 1 ( 1 ...
A hazard quotient is the ratio of the potential exposure to a substance and the level at which no adverse effects are expected. If the Hazard Quotient is calculated to be less than 1, then no adverse health effects are expected as a result of exposure. If the Hazard Quotient is greater than 1, then adverse health effects are possible.
The relative risk (RR) or risk ratio is the ratio of the probability of an outcome in an exposed group to the probability of an outcome in an unexposed group. Together with risk difference and odds ratio, relative risk measures the association between the exposure and the outcome. [1]
Hazard ratio, such as "an increase in both total and invasive breast cancers in women randomized to receive estrogen and progestin for an average of 5 years, with a hazard ratio of 1.24 compared to controls." [10]
A concept closely-related but different [2] to instantaneous failure rate () is the hazard rate (or hazard function), (). In the many-system case, this is defined as the proportional failure rate of the systems still functioning at time t {\displaystyle t} (as opposed to f ( t ) {\displaystyle f(t)} , which is the expressed as a proportion of ...
If the hazard ratio is , there are total subjects, is the probability a subject in either group will eventually have an event (so that is the expected number of events at the time of the analysis), and the proportion of subjects randomized to each group is 50%, then the logrank statistic is approximately normal with mean () and variance 1. [4]
The risk difference (RD), excess risk, or attributable risk [1] is the difference between the risk of an outcome in the exposed group and the unexposed group. It is computed as I e − I u {\displaystyle I_{e}-I_{u}} , where I e {\displaystyle I_{e}} is the incidence in the exposed group, and I u {\displaystyle I_{u}} is the incidence in the ...