Search results
Results From The WOW.Com Content Network
A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...
Making a saline water solution by dissolving table salt in water.The salt is the solute and the water the solvent. In chemistry, a solution is defined by IUPAC as "A liquid or solid phase containing more than one substance, when for convenience one (or more) substance, which is called the solvent, is treated differently from the other substances, which are called solutes.
Air is an example of a solution as well: a homogeneous mixture of gaseous nitrogen solvent, in which oxygen and smaller amounts of other gaseous solutes are dissolved. Mixtures are not limited in either their number of substances or the amounts of those substances, though in most solutions, the solute-to-solvent proportion can only reach a ...
Miscibility (/ ˌ m ɪ s ɪ ˈ b ɪ l ɪ t i /) is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). Such substances are said to be miscible (etymologically equivalent to the common term "mixable").
A solid solution, a term popularly used for metals, is a homogeneous mixture of two compounds in solid state and having a single crystal structure. [1] Many examples can be found in metallurgy , geology , and solid-state chemistry .
If u is a vector representing a solution to a homogeneous system, and r is any scalar, then ru is also a solution to the system. These are exactly the properties required for the solution set to be a linear subspace of R n. In particular, the solution set to a homogeneous system is the same as the null space of the corresponding matrix A.
The homogeneous case (in which all constant terms are zero) is always consistent (because there is a trivial, all-zero solution). There are two cases, depending on the number of linearly dependent equations: either there is just the trivial solution, or there is the trivial solution plus an infinite set of other solutions.
The solutions of a homogeneous linear differential equation form a vector space. In the ordinary case, this vector space has a finite dimension, equal to the order of the equation. All solutions of a linear differential equation are found by adding to a particular solution any solution of the associated homogeneous equation.