Ad
related to: diagram of the inner ear cochlea pictures and parts and functions
Search results
Results From The WOW.Com Content Network
The cochlea is a portion of the inner ear that looks like a snail shell (cochlea is Greek for snail). [5] The cochlea receives sound in the form of vibrations, which cause the stereocilia to move. The stereocilia then convert these vibrations into nerve impulses which are taken up to the brain to be interpreted.
The inner ear has two parts: the bony labyrinth and the membranous labyrinth. The membranous labyrinth is contained within the bony labyrinth, and within the membranous labyrinth is a fluid called endolymph. Between the outer wall of the membranous labyrinth and the wall of the bony labyrinth is the location of perilymph.
The inner ear consists of the cochlea and several non-auditory structures. The cochlea has three fluid-filled sections (i.e. the scala media, scala tympani and scala vestibuli), and supports a fluid wave driven by pressure across the basilar membrane separating two of the sections.
The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates , the inner ear is mainly responsible for sound detection and balance. [ 1 ] In mammals , it consists of the bony labyrinth , a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts: [ 2 ]
The cochlear and vestibular branches of cranial nerve VIII separate according to this schema and terminate in the inner ear. The facial nerve continues traveling through the facial canal, eventually exiting the skull at the stylomastoid foramen. A common mnemonic to remember the anterior quadrants of the inner ear is: "seven up, coke down ...
The cochlear duct (a.k.a. the scala media) is an endolymph filled cavity inside the cochlea, located between the tympanic duct and the vestibular duct, separated by the basilar membrane and the vestibular membrane (Reissner's membrane) respectively. The cochlear duct houses the organ of Corti. [1]
The basilar membrane is a stiff structural element within the cochlea of the inner ear which separates two liquid-filled tubes that run along the coil of the cochlea, the scala media and the scala tympani. The basilar membrane moves up and down in response to incoming sound waves, which are converted to traveling waves on the basilar membrane.
[5] [6] The human cochlea contains on the order of 3,500 inner hair cells and 12,000 outer hair cells at birth. [7] The outer hair cells mechanically amplify low-level sound that enters the cochlea. [8] [9] The amplification may be powered by the movement of their hair bundles, or by an electrically driven motility of their cell bodies.