Ads
related to: delta math answer cheat board
Search results
Results From The WOW.Com Content Network
The nabla is a triangular symbol resembling an inverted Greek delta: [1] or ∇. The name comes, by reason of the symbol's shape, from the Hellenistic Greek word νάβλα for a Phoenician harp, [2] [3] and was suggested by the encyclopedist William Robertson Smith in an 1870 letter to Peter Guthrie Tait.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus .
∆ may refer to: . Triangle (∆), one of the basic shapes in geometry. Many different mathematical equations include the use of the triangle.; Delta (letter) (Δ), a Greek letter also used in mathematics and computer science
To see how this number arises, consider the real one-parameter map =.Here a is the bifurcation parameter, x is the variable. The values of a for which the period doubles (e.g. the largest value for a with no period-2 orbit, or the largest a with no period-4 orbit), are a 1, a 2 etc.
The symbols Δt and ΔT (spoken as "delta T") are commonly used in a variety of contexts. Time ... Finite difference for the mathematics of the Δ operator; Delta ...
Delta (/ ˈ d ɛ l t ə /; [1] uppercase Δ, lowercase δ; Greek: δέλτα, délta, ) [2] is the fourth letter of the Greek alphabet. In the system of Greek numerals , it has a value of four. It was derived from the Phoenician letter dalet 𐤃. [ 3 ]
In mathematics, a delta operator is a shift-equivariant linear operator: [] [] on the vector space of polynomials in a variable over a field that reduces degrees by one. To say that Q {\displaystyle Q} is shift-equivariant means that if g ( x ) = f ( x + a ) {\displaystyle g(x)=f(x+a)} , then