When.com Web Search

  1. Ad

    related to: basic terms in polynomials definition chemistry worksheet 1 quizlet answers

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive part and content - Wikipedia

    en.wikipedia.org/wiki/Primitive_part_and_content

    A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial. Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of ...

  3. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The names for the degrees may be applied to the polynomial or to its terms. For example, the term 2x in x 2 + 2x + 1 is a linear term in a quadratic polynomial. The polynomial 0, which may be considered to have no terms at all, is called the zero polynomial. Unlike other constant polynomials, its degree is not zero.

  4. Glossary of chemistry terms - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_chemistry_terms

    Also acid ionization constant or acidity constant. A quantitative measure of the strength of an acid in solution expressed as an equilibrium constant for a chemical dissociation reaction in the context of acid-base reactions. It is often given as its base-10 cologarithm, p K a. acid–base extraction A chemical reaction in which chemical species are separated from other acids and bases. acid ...

  5. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    Moreover, if one sets x = 1 + t, one gets without computation that () = (+) is a polynomial in t with the same first coefficient 3 and constant term 1. [2] The rational root theorem implies thus that a rational root of Q must belong to { ± 1 , ± 1 3 } , {\textstyle \{\pm 1,\pm {\frac {1}{3}}\},} and thus that the rational roots of P satisfy x ...

  6. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    For any given n ≥ 1, among the polynomials of degree n with leading coefficient 1 (monic polynomials): = is the one of which the maximal absolute value on the interval [−1, 1] is minimal. This maximal absolute value is: 1 2 n − 1 {\displaystyle {\frac {1}{2^{n-1}}}} and | f ( x ) | reaches this maximum exactly n + 1 times at: x = cos ...

  7. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    This number can be seen as equal to the one of the first definition, independently of any of the formulas below to compute it: if in each of the n factors of the power (1 + X) n one temporarily labels the term X with an index i (running from 1 to n), then each subset of k indices gives after expansion a contribution X k, and the coefficient of ...

  8. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  9. Defining equation (physical chemistry) - Wikipedia

    en.wikipedia.org/wiki/Defining_equation...

    Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.