Search results
Results From The WOW.Com Content Network
Magnetic dipole–dipole interaction, also called dipolar coupling, refers to the direct interaction between two magnetic dipoles. Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field. It follows that ...
A schematic diagram of 4 electrons scattered by 4 magnetic atoms far apart. Each atom is at the center of decaying electron waves. The electrons mediate the interactions among the atoms, whose poles can flip because of the influence of other atoms and the surrounding electrons. Reproduced from [1] and [2].
It is related to the prototypical Ising model, where at each site of a lattice, a spin {} represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction .
Dipole coupling of the ferromagnetic layers results in antiparallel alignment of the magnetization of the ferromagnets. Antiferromagnetism plays a crucial role in giant magnetoresistance , as had been discovered in 1988 by the Nobel Prize winners Albert Fert and Peter Grünberg (awarded in 2007) using synthetic antiferromagnets.
Monopole moments have a 1/r rate of decrease, dipole moments have a 1/r 2 rate, quadrupole moments have a 1/r 3 rate, and so on. The higher the order, the faster the potential drops off. Since the lowest-order term observed in magnetic sources is the dipole term, it dominates at large distances.
A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus.
Example 1 H NMR spectrum (1-dimensional) of ethanol plotted as signal intensity vs. chemical shift.There are three different types of H atoms in ethanol regarding NMR. The hydrogen (H) on the −OH group is not coupling with the other H atoms and appears as a singlet, but the CH 3 − and the −CH 2 − hydrogens are coupling with each other, resulting in a triplet and quartet respectively.
In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.