Ad
related to: superfluid physics
Search results
Results From The WOW.Com Content Network
Superfluid vacuum theory (SVT) is an approach in theoretical physics and quantum mechanics where the physical vacuum is viewed as superfluid. [citation needed] The ultimate goal of the approach is to develop scientific models that unify quantum mechanics (describing three of the four known fundamental interactions) with gravity.
Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable background) is considered as a superfluid or as a Bose–Einstein condensate (BEC).
Quantum turbulence [1] [2] is the name given to the turbulent flow – the chaotic motion of a fluid at high flow rates – of quantum fluids, such as superfluids.The idea that a form of turbulence might be possible in a superfluid via the quantized vortex lines was first suggested by Richard Feynman.
In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. [2]
Richard Phillips Feynman (/ ˈ f aɪ n m ə n /; May 11, 1918 – February 15, 1988) was an American theoretical physicist.He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid helium, and in particle physics, for which he proposed the parton model.
The superfluid is characterized by long-range phase coherence, a spontaneous breaking of the Hamiltonian's continuous () symmetry, a non-zero compressibility and superfluid susceptibility. At non-zero temperature, in certain parameter regimes a regular fluid phase appears that does not break the U ( 1 ) {\displaystyle U(1)} symmetry and does ...
A supersolid is a special quantum state of matter where particles form a rigid, spatially ordered structure, but also flow with zero viscosity.This is in contradiction to the intuition that flow, and in particular superfluid flow with zero viscosity, is a property exclusive to the fluid state, e.g., superconducting electron and neutron fluids, gases with Bose–Einstein condensates, or ...
Quantum fluids are distinguished by vorticity that is quantised, a restriction imposed by the quantum wavefunction that describes the fluid when it reaches a superfluid state; the ability of a fluid to form quantum vortices is the most widely used experimental signature of superfluidity.