Search results
Results From The WOW.Com Content Network
The critical engine of a multi-engine fixed-wing aircraft is the engine that, in the event of failure, would most adversely affect the performance or handling abilities of an aircraft. On propeller aircraft, there is a difference in the remaining yawing moments after failure of the left or the right (outboard) engine when all propellers rotate ...
The tendency of powerful propeller aircraft to roll in reaction to engine torque creates a risk of accelerated stalls. When an aircraft such as a Mitsubishi MU-2 is flying close to its stall speed, the sudden application of full power may cause it to roll, creating the same aerodynamic conditions that induce an accelerated stall in turning ...
Illustration of the right-hand rule for the Lorentz force, cross product of an electric current with a magnetic field. The working principle involves the acceleration of an electrically conductive fluid (which can be a liquid or an ionized gas called a plasma) by the Lorentz force, resulting from the cross product of an electric current (motion of charge carriers accelerated by an electric ...
A slipstream is a region behind a moving object in which a wake of fluid (typically air or water) is moving at velocities comparable to that of the moving object, relative to the ambient fluid through which the object is moving. [1] The term slipstream also applies to the similar region adjacent to an object with a fluid moving around it.
Deflected slipstream is an approach to creating an aircraft that can take off and land vertically (), or at least with a very short runway ().The basic principle is to deflect the slipstream from one or more propellers approximately 90 degrees, to create an upward thrust for vertical takeoff and a downward air cushion for landing.
P-Factor therefore determines which engine is critical engine. [6] For most aircraft (which have clockwise rotating propellers), the left engine is the critical engine. For aircraft with counter-rotating propellers (i.e. not rotating in the same direction) the P-factor moments are equal and both engines are considered equally critical. Fig. 1.
Effective February 15, 2007, the FAA ruled that US-registered twin-engine airplane operators can fly more than 180-minute ETOPS to the design limit of the aircraft. In November 2009, the Airbus A330 became the first aircraft to receive ETOPS-240 approval, which has since been offered by Airbus as an option.
It is important to understand the aerodynamic behaviour of a motor vehicle when drafting, for example if the rear car is too close to the front car, the air supply to its radiator will be reduced and there is a possibility of the engine overheating. Most motor sport aerodynamic analysis is performed using wind tunnel testing.