Search results
Results From The WOW.Com Content Network
The loop gain is calculated by imagining the feedback loop is broken at some point, and calculating the net gain if a signal is applied. In the diagram shown, the loop gain is the product of the gains of the amplifier and the feedback network, −Aβ. The minus sign is because the feedback signal is subtracted from the input.
Phase margin and its important companion concept, gain margin, are measures of stability in closed-loop, dynamic-control systems. Phase margin indicates relative stability, the tendency to oscillate during its damped response to an input change such as a step function.
In electronics, the Barkhausen stability criterion is a mathematical condition to determine when a linear electronic circuit will oscillate. [ 1 ] [ 2 ] [ 3 ] It was put forth in 1921 by German physicist Heinrich Barkhausen (1881–1956). [ 4 ]
The usual design procedure is to design the innermost subsystem (the current control loop in the telescope example) using local feedback to linearize and flatten the gain. Stability is generally assured by Bode plot methods. Usually, the bandwidth is made as wide as possible. Then the next loop (the velocity loop in the telescope example) is ...
Tuning a control loop is the adjustment of its control parameters (proportional band/gain, integral gain/reset, derivative gain/rate) to the optimum values for the desired control response. Stability (no unbounded oscillation) is a basic requirement, but beyond that, different systems have different behavior, different applications have ...
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
Spirule. In control theory and stability theory, root locus analysis is a graphical method for examining how the roots of a system change with variation of a certain system parameter, commonly a gain within a feedback system.
The stability characteristics of the gain feedback product β A OL are often displayed and investigated on a Nyquist plot (a polar plot of the gain/phase shift as a parametric function of frequency). A simpler, but less general technique, uses Bode plots. The combination L = −β A OL appears commonly in feedback analysis and is called the ...