When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transformation (function) - Wikipedia

    en.wikipedia.org/wiki/Transformation_(function)

    In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. [ 2 ] [ 3 ] [ 4 ] Examples include linear transformations of vector spaces and geometric transformations , which include projective transformations , affine transformations , and ...

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an uncertainty principle by viewing a function and its Fourier transform as conjugate variables with respect to the symplectic form on the time–frequency domain: from the point of view of the linear canonical transformation, the ...

  4. List of transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_transforms

    Affine transformation (Euclidean geometry) Bäcklund transform; Bilinear transform; Box–Muller transform; Burrows–Wheeler transform (data compression) Chirplet transform; Distance transform; Fractal transform; Gelfand transform; Hadamard transform; Hough transform (digital image processing) Inverse scattering transform; Legendre ...

  5. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.

  6. Transform theory - Wikipedia

    en.wikipedia.org/wiki/Transform_theory

    In mathematics, transform theory is the study of transforms, which relate a function in one domain to another function in a second domain. The essence of transform theory is that by a suitable choice of basis for a vector space a problem may be simplified—or diagonalized as in spectral theory.

  7. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    In differential geometry, the components of a vector relative to a basis of the tangent bundle are covariant if they change with the same linear transformation as a change of basis. They are contravariant if they change by the inverse transformation. This is sometimes a source of confusion for two distinct but related reasons.

  8. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    Periodic functions can be identified with functions on a circle; for this reason Fourier series are the subject of Fourier analysis on the circle group, denoted by or . The Fourier transform is also part of Fourier analysis , but is defined for functions on R n {\displaystyle \mathbb {R} ^{n}} .

  9. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...