When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  3. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  4. Relief (feature selection) - Wikipedia

    en.wikipedia.org/wiki/Relief_(feature_selection)

    Relief is an algorithm developed by Kira and Rendell in 1992 that takes a filter-method approach to feature selection that is notably sensitive to feature interactions. [1] [2] It was originally designed for application to binary classification problems with discrete or numerical features.

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Features of concrete given such as fly ash, water, etc. 103 Text Regression 2009 [235] [236] I. Yeh Musk Dataset Predict if a molecule, given the features, will be a musk or a non-musk. 168 features given for each molecule. 6598 Text Classification 1994 [237] Arris Pharmaceutical Corp. Steel Plates Faults Dataset Steel plates of 7 different types.

  6. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    In machine learning the random subspace method, [1] also called attribute bagging [2] or feature bagging, is an ensemble learning method that attempts to reduce the correlation between estimators in an ensemble by training them on random samples of features instead of the entire feature set.

  7. Feature hashing - Wikipedia

    en.wikipedia.org/wiki/Feature_hashing

    Instead of maintaining a dictionary, a feature vectorizer that uses the hashing trick can build a vector of a pre-defined length by applying a hash function h to the features (e.g., words), then using the hash values directly as feature indices and updating the resulting vector at those indices. Here, we assume that feature actually means ...

  8. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In feature engineering, two types of features are commonly used: numerical and categorical. Numerical features are continuous values that can be measured on a scale. Examples of numerical features include age, height, weight, and income. Numerical features can be used in machine learning algorithms directly. [citation needed]

  9. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file