Search results
Results From The WOW.Com Content Network
The manipulations of the Rubik's Cube form the Rubik's Cube group. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of ...
Plus teacher and student package: Group Theory This package brings together all the articles on group theory from Plus, the online mathematics magazine produced by the Millennium Mathematics Project at the University of Cambridge, exploring applications and recent breakthroughs, and giving explicit definitions and examples of groups.
In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group .
In mathematics, a presentation is one method of specifying a group.A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators.
A free group of rank k clearly has subgroups of every rank less than k. Less obviously, a (nonabelian!) free group of rank at least 2 has subgroups of all countable ranks. The commutator subgroup of a free group of rank k > 1 has infinite rank; for example for F(a,b), it is freely generated by the commutators [a m, b n] for non-zero m and n.
In mathematics, a dihedral group is the group of symmetries of a regular polygon, [1] [2] which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. [3] The notation for the dihedral group differs in geometry and abstract ...
The quotient group is the same idea, although one ends up with a group for a final answer instead of a number because groups have more structure than an arbitrary collection of objects: in the quotient / , the group structure is used to form a natural "regrouping".
A finitely generated group has a solvable word problem if and only if it can be embedded in every algebraically closed group. The proofs of these results are in general very complex. However, a sketch of the proof that a countable group C {\displaystyle C\ } can be embedded in an algebraically closed group follows.